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Computational Science = Always Hungry

\ L — e

® LANLs Roadrunner '

® Petaflop machine, tens of thousands of cores

® Building bigger machines isn’t free

® Higher processor count

® More Failures
® Bigger, more frequent checkpoints

® Also bigger simulation/visualization output

® Having time to compute requires fast |[/O!




Lifetime of a Scientific App
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Parallel Apps = Parallel Writes

® VWrites are concurrent
® Jens of thousands of concurrent writes
® Challenge for a filesystem

® [wo common write patterns

e N-N, N-I|
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N-1 Concurrent Writing Doesn’t Scale

Write bandW|dth of LANL’s MPI IO TEST
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N-1: What’s the hold up?

® Contention within a single object

® | ocking, safety

® Small strides, small writes
® May be misaligned
® Stripe alignment

® RAID parity read-modify-write disaster
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Ditch N-1? Not so fast....

® At HPC sites (LANL) many old codes use!VN I
\

® “Untouchables”

® Newly written codes still choosing N-|

® 2 of 8 open science applications on Roadrunner

® Common scientific formatting libraries are N-|

® Many benchmarks as well

e Half the PIO Benchmarking Consortium

® Designed to represent real apps
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How can we convert N-1 to N-N?

Node | Node 2 Node 3




How can we convert N-1 to N-N?

Node | Node 2 Node 3

Our solution:
PLFS
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Outline

® Motivation
® PLFS Design

® Evaluation
® Write Speeds in PLFS
® Read Speeds in PLFS

® Metadata Rates in PLFS

® Future Work

® Conclusions
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Design of a checkpoint interposition layer

Requirement Solution

Extreme parallelism Decouple writers to individual files

Fast, efficient writes Write in a log structured manner

No application changes [Expose POSIX filesystem interface

Portable across filesystems |Implement as a ‘stackable’ filesystem

Low comp. node footprint [Use existing parallel FS storage




Using PLFS

® PLFS is implemented as a FUSE filesystem
® Mounted on top of an existing parallel filesystem

® Example: On every node, mount as
$ plfs ~/mnt/plfs -plfs backend=/mnt/scratch
® Checkpoints write to ~/mnt/plfs

® PLFS stores data in parallel filesystem /mnt/scratch

Applications write checkpoints to PLFS the
same as they wrote to the parallel filesystem
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PLFS Decoupling

® Processes open a file foo’ in PLFS mount point

® PLFS mkdir’s directory foo/’ in underlying filesystem

® PLFS mkdir’s ‘foo/<hostname>/" in underlying filesystem
® Processes start writing to foo’ in PLFS

® PLFS opens a data log per writer, begins appending

® PLFS writes a index file per host
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Review: Decoupled Layout
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PLFS converts N-1 to N-N speeds

Write bandwidth of LANLs MPI-IO-TEST
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Writes Evaluated Extensively

® GPFS, Lustre, Panfs filesystems
® Applications and 1O Kernels

° Synthetlc Checkpoint Benchmarks
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Alignment and Write Size

® Small strided writes induce contention

® Hurt caching, buffering

® Misaligned writes use resources inefficiently
® False sharing

® RAID parity read-modify-write problem
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LBNL’s PatternlO
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“Zero-Effort” Improvement For Real Apps
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What about the read path?

® Checkpoint is ‘write once, read maybe’
® PLFS readers read in indices, remap requests
® VWe're writing in a log structured way

® Can’t this hurt reads!?
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Read Speed Improved by PLFS?

Read bandW|dth of LANLs MPI-IO-TEST
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Read Speed Explanation (I)

® Checkpoints don’t write randomly
® Examined write traces of evaluated applications

® |n every case, processes wrote to monotonically
increasing logical offsets

® Creates offset-sorted logs
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Read Speed Explanation (ll)

® Checkpoints aren’t read randomly either
® Restart and archive read sequentially

® PLFS reads from many files at once

® Gets more filesystem resources than N-|

® Next byte always in read-ahead buffer of some file
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Metadata operations performance

® Recall: A PLFS file is really a directory

® Chmods, Chowns, Chgrps, Utimes, etc.

® Use the container or a special access file

® Stat can use access file for permissions, ownership
® VWhat about size? Modified time!?
® Have to stat every data log!

® Expensive with thousands of independent logs!

Carnegie Mellon
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Stat Optimization

® Containers have special metadata subdirectory

® On close, writers make metadata/host.B.L.T

® B = blocks of capacity
® | = last offset (i.e. file size)

® T = timestamp of last write (mtime)

® Stat can now be implemented with a readdir

® |f writers are still open, have to use slow path

Carnegie Mellon
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Stat Rates

Stat Time (s)
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Remaining Challenges and Future Work

® First open invokes thousands of sub-file creates

® |nc

ex reprocessing overhead in read-write mode

® Oc

d read patterns? Data analysis!?

® Faster stat of open files

® 1s -1 of growing file
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Future Work: PLFS + HDFS

C

® ‘Cloud’ filesystems gaining prevalence

® High resilience but often lack important semantics

e HDEFS:

® No concurrent writers
® No reopen for write

® Could be achieved by ‘decoupling’ every open

® Use PLFS to add semantics to Cloud Filesystems

® See me at poster

eie Mellon
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Conclusions

® Drastically improves performance of N-|

chec

® Wor

Kpointing

<s on multiple parallel filesystems

® No application, filesystem modifications

® Does not penalize checkpoint reading

® Potential to enrich semantics of cloud filesystems

® Downloadable at:
http://sourceforge.net/projects/plfs/
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